Taylor Swift Series (Maclaurin Series)

M. Kutay
Made with ${ }^{L A} T_{E} X$

February 27, 2024

Outline

(1) What is it?
(2) Why?
(3) Derivation
(4) The More the Merrier
(5) Notice a Few Things
(6) Maclaurin Series
(7) Euler's Formula
(8) Example 1
(9) Example 2
(10) Connection to Taylor Series

What is it?

- Approximation of a function with an infinite series
- Approximates near $x=0$

Why?

- To compute $\sin x, \cos x$, and e^{x} fast
- Calculators (your TI) use this technique
- To simplify equations/functions
- In simple pendulum, we approximated $\sin x$ with x

Derivation

- Calculators can multiply, add, subtract, divide, and take powers of whole numbers quickly
- Using polynomials will be efficient
- Since polynomials are just multiplications, additions, and exponentiations of numbers

Derivation

Figure: The Function $\cos x$

- Approximate to two degrees
- Find real numbers for c_{0}, c_{1}, and c_{2} that approximate $\cos x$ the best

$$
\cos x \approx c_{0}+c_{1} x+c_{2} x^{2}
$$

Derivation

- Approximation near $x=0$

$$
\begin{aligned}
\cos 0 & =c_{0}+c_{1} \cdot 0+c_{2} \cdot 0^{2} \\
c_{0} & =1
\end{aligned}
$$

Derivation

- The green function is better, but why?
- The rate of change is the same as $\cos x$ at $x=0$
- Approximation must have the same rate of change at $x=0$
- $\cos ^{\prime}(x)=-\sin x$, and $\left(c_{0}+c_{1} x+c_{2} x^{2}\right)^{\prime}=c_{1}+2 c_{2} x$

$$
\begin{aligned}
-\sin 0=0 & =c_{1}+2 c_{2} \cdot 0 \\
c_{1} & =0
\end{aligned}
$$

Derivation

- $\cos x$ curves downwards at $x=0$
- So, the second derivative is negative
- So, the rate of change is decreasing
- Same second derivative will ensure that they curve at the same rate

$$
\begin{aligned}
\cos ^{\prime \prime}(x) & =-\cos x \\
\left(c_{0}+c_{1} x+c_{2} x^{2}\right)^{\prime \prime} & =2 c_{2}
\end{aligned}
$$

Derivation

- $\cos ^{\prime \prime}(x)=-\cos x$, and $\left(c_{0}+c_{1} x+c_{2} x^{2}\right)^{\prime \prime}=2 c_{2}$

$$
\begin{aligned}
-\cos 0 & =2 c_{2} \\
-1 & =2 c_{2} \\
c_{2} & =-\frac{1}{2}
\end{aligned}
$$

$$
\cos x \approx 1-\frac{1}{2} x^{2}
$$

Derivation

- Okay, but how good is the approximation?
- For $x=0.1, \cos x=0.99500417$, and the approximation, $1-\frac{1}{2} x^{2}=0.995$
- For $x=0.25, \cos x=0.9689124$, and the approximation, $1-\frac{1}{2} x^{2}=0.96875$

The More the Merrier

- But why stop at x^{2} ? Why not go further?
- More terms will give more control over the approximation
- Add another term $c_{3} x^{3}$ to the approximation

$$
\cos x \approx 1-\frac{1}{2} x^{2}+c_{3} x^{3}
$$

- Taking the third derivative of a polynomial, all the terms that have a power less than 3 will vanish
- And, $\cos ^{\prime \prime \prime \prime}(x)=\sin x$
- Taking the derivative,

$$
\begin{gathered}
\cos ^{\prime \prime \prime}(x)=\sin x=\left(-x+3 c_{3} x^{2}\right)^{\prime \prime}=\left(-1+2 \cdot 3 c_{3} x\right)^{\prime}=1 \cdot 2 \cdot 3 \cdot c_{3} \\
\sin 0=1 \cdot 2 \cdot 3 \cdot c_{3} \\
c_{3}=0
\end{gathered}
$$

The More the Merrier

$$
\cos x \approx 1-\frac{1}{2} x^{2}
$$

- This approximation is the best for all cubic polynomials, as well as all the quadratic polynomials
- But, we can do better if we extend to another term

$$
\begin{aligned}
& \cos x \approx 1-\frac{1}{2} x^{2}+c_{4} x^{4} \\
& \cos ^{(4)}(x)=\cos x \\
&\left(1-\frac{1}{2} x^{2}+c_{4} x^{4}\right)^{(4)}=1 \cdot 2 \cdot 3 \cdot 4 \cdot c_{4} \\
& \cos 0=1 \cdot 2 \cdot 3 \cdot 4 \cdot c_{4} \\
& c_{4}=\frac{1}{24}
\end{aligned}
$$

The More the Merrier

$$
\cos x \approx 1-\frac{1}{2} x^{2}+\frac{1}{24} x^{4}
$$

- This is a really good approximation of $\cos x$
- For most physics problems, this would be fine
- But, we are dealing with maths

Notice a Few Things

- Firstly, factorials come up quite naturally from taking n successive derivatives of $c_{n} x^{n}$

$$
\begin{aligned}
\frac{\mathrm{d}\left(c_{n} x^{n}\right)}{\mathrm{d} x} & =n \cdot c_{n} \cdot x^{n-1} \\
\frac{\mathrm{~d}^{2}\left(c_{n} x^{n}\right)}{\mathrm{d} x^{2}} & =n \cdot(n-1) \cdot c_{n} \cdot x^{n-2} \\
\frac{\mathrm{~d}^{3}\left(c_{n} x^{n}\right)}{\mathrm{d} x^{3}} & =n \cdot(n-1) \cdot(n-2) \cdot c_{n} \cdot x^{n-3} \\
& \vdots \\
\frac{\mathrm{~d}^{n}\left(c_{n} x^{n}\right)}{\mathrm{d} x^{n}} & =n!\cdot c_{n}
\end{aligned}
$$

- So, we have to divide by the appropriate factorial to cancel out this effect

$$
c_{n}=\frac{\text { desired derivative value }}{n!}
$$

Notice a Few Things

- Secondly, adding new terms does not mess up older terms
- Other higher-order terms that have x will not affect the lower order terms

$$
\begin{aligned}
P(x) & =1-\frac{1}{2} x^{2}+c_{4} x^{4} \\
P^{\prime \prime}(0) & =2\left(-\frac{1}{2}\right)+3 \cdot 4(0)^{2}
\end{aligned}
$$

- Each derivative of a polynomial at $x=0$ is controlled by one and only one of the coefficients

$$
P(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}
$$

Notice a Few Things

- Derivative information at $x=0 \longrightarrow$ output information near $x=0$

Notice a Few Things

$$
\begin{gathered}
\cos 0=1 \\
\cos ^{\prime} 0=0 \\
\cos ^{\prime \prime} 0=-1 \\
\cos ^{\prime \prime \prime} 0=0 \\
\cos ^{(4)} 0=1 \\
\vdots \\
P(x)=1+0 \frac{x^{1}}{1!}+-1 \frac{x^{2}}{2!}+0 \frac{x^{3}}{3!}+1 \frac{x^{4}}{4!}+\cdots
\end{gathered}
$$

- Those factorials are there to cancel out the cascading effect of derivatives

Maclaurin Series

- The same approach can be used for any function
- We can approximate $f(x)$ near $x=0$ with any degree of accuracy we want

$$
P(x)=f(0)+f^{\prime}(0) \frac{x}{1}+f^{\prime \prime}(0) \frac{x^{2}}{2!}+f^{\prime \prime \prime}(0) \frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(0) x^{n}}{n!}
$$

- This summation at infinity is the Maclaurin series of $f(x)$
- Let us approximate the function e^{x} (which is in the Formula Booklet)

Maclaurin Series

- Any derivative of e^{x} is e^{x}, so $e^{0}=1$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
$$

Euler's Formula

- We can, in fact, use this to prove

$$
\cos \theta+i \sin \theta=\mathrm{e}^{i \theta}
$$

$$
\begin{aligned}
\cos \theta & =1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots \\
\sin \theta & =\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots \\
e^{i \theta} & =1+(i \theta)+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\frac{(i \theta)^{7}}{7!}+\cdots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-\frac{i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\frac{i \theta^{5}}{5!}-\frac{\theta^{6}}{6!}-\frac{i \theta^{7}}{7!}+\cdots \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\frac{\theta^{6}}{6!}+\cdots\right)+i\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\frac{\theta^{7}}{7!}+\cdots\right) \\
& =\cos \theta+i \sin \theta \\
& =\operatorname{cis} \theta
\end{aligned}
$$

Example 1

- Find the Maclaurin series of the function $f(x)=\mathrm{e}^{x} \sin x$ up to the term x^{3}
- Two methods: multiply series expansions of e^{x} and $\sin x$, or rigour

$$
\begin{aligned}
f(x) & =\mathrm{e}^{x} \sin x \\
f^{\prime}(x) & =\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x \\
f^{\prime \prime}(x) & =\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x=2 e^{x} \cos x \\
f^{\prime \prime \prime}(x) & =2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x=2 \mathrm{e}^{x}(\cos x-\sin x)
\end{aligned}
$$

- $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=2, f^{\prime \prime \prime}(0)=2$

$$
\begin{aligned}
f(x) & =0+1 x+\frac{2 x^{2}}{2!}+\frac{2 x^{3}}{3!} \\
& =x+x^{2}+\frac{x^{3}}{3}
\end{aligned}
$$

Example 2

- Find the Maclaurin series of the function $f(x)=(1+x)^{p}$ for $p \in \mathbb{R}$

$$
\begin{aligned}
& f(x)=(1+x)^{p} ; f(0)=1 \\
& f^{\prime}(x)=p(1+x)^{p-1} ; f^{\prime}(0)=p \\
& f^{\prime \prime}(x)=p(p-1)(1+x)^{p-2} ; f^{\prime \prime}(0)=p(p-1) \\
& \vdots \\
& f^{(n)}(x)=p(p-1)(p-2) \cdots(p-n+1)(1+x)^{p-n} ; \\
& f^{(n)}(0)=p(p-1)(p-2) \cdots(p-n+1) \\
& P(x)=1+p x+\frac{p(p-1) x^{2}}{2!}+\frac{p(p-1)(p-2) x^{3}}{3!}+\cdots \\
&=\sum_{n=0}^{\infty} \frac{p(p-1)(p-2) \cdots(p-n+1) x^{n}}{n!} \\
&=\sum_{n=0}^{\infty}\binom{p}{n} x^{n}
\end{aligned}
$$

Connection to Taylor Series

- Maclaurin series approximates a function near $x=0$
- Can be approximated near any point $x=a$ using Taylor series

$$
P(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2!}+f^{\prime \prime \prime}(a) \frac{(x-a)^{3}}{3!}+\cdots
$$

Figure: The Function $\ln x$ and Approximation

