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What is it?

Approximation of a function with an infinite series
Approximates near 𝑥 = 0
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Why?

To compute sin 𝑥, cos 𝑥, and e𝑥 fast
Calculators (your TI) use this technique
To simplify equations/functions
In simple pendulum, we approximated sin 𝑥 with 𝑥
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Derivation

Calculators can multiply, add, subtract, divide, and take powers of
whole numbers quickly
Using polynomials will be efficient
Since polynomials are just multiplications, additions, and
exponentiations of numbers
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Derivation

Figure: The Function cos 𝑥

Approximate to two degrees
Find real numbers for 𝑐0, 𝑐1, and 𝑐2 that approximate cos 𝑥 the best

cos 𝑥 ≈ 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2
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Derivation
Approximation near 𝑥 = 0

cos 0 = 𝑐0 + 𝑐1 ⋅ 0 + 𝑐2 ⋅ 02

𝑐0 = 1
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Derivation

The green function is better, but why?
The rate of change is the same as cos 𝑥 at 𝑥 = 0
Approximation must have the same rate of change at 𝑥 = 0
cos′(𝑥) = − sin 𝑥, and (𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2)′ = 𝑐1 + 2𝑐2𝑥

− sin 0 = 0 = 𝑐1 + 2𝑐2 ⋅ 0
𝑐1 = 0
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Derivation

cos 𝑥 curves downwards at 𝑥 = 0
So, the second derivative is negative
So, the rate of change is decreasing
Same second derivative will ensure that they curve at the same rate

cos″(𝑥) = − cos 𝑥
(𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2)″ = 2𝑐2
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Derivation
cos″(𝑥) = − cos 𝑥, and (𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2)″ = 2𝑐2

− cos 0 = 2𝑐2

−1 = 2𝑐2

𝑐2 = −1
2

cos 𝑥 ≈ 1 − 1
2

𝑥2
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Derivation
Okay, but how good is the approximation?
For 𝑥 = 0.1, cos 𝑥 = 0.99500417, and the approximation,
1 − 1

2𝑥2 = 0.995
For 𝑥 = 0.25, cos 𝑥 = 0.9689124, and the approximation,
1 − 1

2𝑥2 = 0.96875
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The More the Merrier
But why stop at 𝑥2? Why not go further?
More terms will give more control over the approximation
Add another term 𝑐3𝑥3 to the approximation

cos 𝑥 ≈ 1 − 1
2

𝑥2 + 𝑐3𝑥3

Taking the third derivative of a polynomial, all the terms that have a
power less than 3 will vanish
And, cos‴(𝑥) = sin 𝑥
Taking the derivative,

cos‴(𝑥) = sin 𝑥 = (−𝑥 + 3𝑐3𝑥2)″ = (−1 + 2 ⋅ 3𝑐3𝑥)′ = 1 ⋅ 2 ⋅ 3 ⋅ 𝑐3

sin 0 = 1 ⋅ 2 ⋅ 3 ⋅ 𝑐3

𝑐3 = 0
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The More the Merrier

cos 𝑥 ≈ 1 − 1
2

𝑥2

This approximation is the best for all cubic polynomials, as well as all
the quadratic polynomials
But, we can do better if we extend to another term

cos 𝑥 ≈ 1 − 1
2

𝑥2 + 𝑐4𝑥4

cos(4)(𝑥) = cos 𝑥

(1 − 1
2

𝑥2 + 𝑐4𝑥4)
(4)

= 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 𝑐4

cos 0 = 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 𝑐4

𝑐4 = 1
24
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The More the Merrier

cos 𝑥 ≈ 1 − 1
2

𝑥2 + 1
24

𝑥4

This is a really good approximation of cos 𝑥
For most physics problems, this would be fine
But, we are dealing with maths
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Notice a Few Things
Firstly, factorials come up quite naturally from taking 𝑛 successive
derivatives of 𝑐𝑛𝑥𝑛

d (𝑐𝑛𝑥𝑛)
d𝑥

= 𝑛 ⋅ 𝑐𝑛 ⋅ 𝑥𝑛−1

d2 (𝑐𝑛𝑥𝑛)
d𝑥2 = 𝑛 ⋅ (𝑛 − 1) ⋅ 𝑐𝑛 ⋅ 𝑥𝑛−2

d3 (𝑐𝑛𝑥𝑛)
d𝑥3 = 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) ⋅ 𝑐𝑛 ⋅ 𝑥𝑛−3

⋮
d𝑛 (𝑐𝑛𝑥𝑛)

d𝑥𝑛 = 𝑛! ⋅ 𝑐𝑛

So, we have to divide by the appropriate factorial to cancel out this
effect

𝑐𝑛 = desired derivative value
𝑛!
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Notice a Few Things

Secondly, adding new terms does not mess up older terms
Other higher-order terms that have 𝑥 will not affect the lower order
terms

𝑃(𝑥) = 1 − 1
2

𝑥2 + 𝑐4𝑥4

𝑃 ″(0) = 2 (−1
2

) + 3 ⋅ 4(0)2

Each derivative of a polynomial at 𝑥 = 0 is controlled by one and only
one of the coefficients

𝑃(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4

M. Kutay (Made with LATEX) Taylor Swift Series (Maclaurin Series) February 27, 2024 16 / 24



Notice a Few Things

Derivative information at 𝑥 = 0 ⟶ output information near 𝑥 = 0
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Notice a Few Things

cos 0 = 1
cos′ 0 = 0
cos″ 0 = −1
cos‴ 0 = 0

cos(4) 0 = 1
⋮

𝑃 (𝑥) = 1 + 0𝑥1

1!
+ −1𝑥2

2!
+ 0𝑥3

3!
+ 1𝑥4

4!
+ ⋯

Those factorials are there to cancel out the cascading effect of
derivatives
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Maclaurin Series

The same approach can be used for any function
We can approximate 𝑓(𝑥) near 𝑥 = 0 with any degree of accuracy we
want

𝑃(𝑥) = 𝑓(0) + 𝑓 ′(0)𝑥
1

+ 𝑓″(0)𝑥2

2!
+ 𝑓‴(0)𝑥3

3!
+ ⋯ =

∞
∑
𝑛=0

𝑓 (𝑛)(0)𝑥𝑛

𝑛!

This summation at infinity is the Maclaurin series of 𝑓(𝑥)
Let us approximate the function 𝑒𝑥 (which is in the Formula Booklet)
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Maclaurin Series
Any derivative of 𝑒𝑥 is 𝑒𝑥, so 𝑒0 = 1

𝑒𝑥 = 1 + 𝑥 + 𝑥2

2!
+ 𝑥3

3!
+ 𝑥4

4!
+ ⋯
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Euler’s Formula
We can, in fact, use this to prove

cos 𝜃 + 𝑖 sin 𝜃 = e𝑖𝜃

cos 𝜃 = 1 − 𝜃2

2!
+ 𝜃4

4!
− 𝜃6

6!
+ ⋯

sin 𝜃 = 𝜃 − 𝜃3

3!
+ 𝜃5

5!
− 𝜃7

7!
+ ⋯

𝑒𝑖𝜃 = 1 + (𝑖𝜃) + (𝑖𝜃)2

2!
+ (𝑖𝜃)3

3!
+ (𝑖𝜃)4

4!
+ (𝑖𝜃)5

5!
+ (𝑖𝜃)6

6!
+ (𝑖𝜃)7

7!
+ ⋯

= 1 + 𝑖𝜃 − 𝜃2

2!
− 𝑖𝜃3

3!
+ 𝜃4

4!
+ 𝑖𝜃5

5!
− 𝜃6

6!
− 𝑖𝜃7

7!
+ ⋯

= (1 − 𝜃2

2!
+ 𝜃4

4!
− 𝜃6

6!
+ ⋯) + 𝑖 (𝜃 − 𝜃3

3!
+ 𝜃5

5!
− 𝜃7

7!
+ ⋯)

= cos 𝜃 + 𝑖 sin 𝜃
= cis 𝜃
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Example 1
Find the Maclaurin series of the function 𝑓(𝑥) = e𝑥 sin 𝑥 up to the
term 𝑥3

Two methods: multiply series expansions of e𝑥 and sin 𝑥, or rigour

𝑓(𝑥) = e𝑥 sin 𝑥
𝑓 ′(𝑥) = e𝑥 sin 𝑥 + e𝑥 cos 𝑥
𝑓″(𝑥) = e𝑥 cos 𝑥 − e𝑥 sin 𝑥 + e𝑥 sin 𝑥 + e𝑥 cos 𝑥 = 2𝑒𝑥 cos 𝑥
𝑓‴(𝑥) = 2e𝑥 cos 𝑥 − 2e𝑥 sin 𝑥 = 2e𝑥(cos 𝑥 − sin 𝑥)

𝑓(0) = 0, 𝑓 ′(0) = 1, 𝑓″(0) = 2, 𝑓‴(0) = 2

𝑓(𝑥) = 0 + 1𝑥 + 2𝑥2

2!
+ 2𝑥3

3!

= 𝑥 + 𝑥2 + 𝑥3

3
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Example 2
Find the Maclaurin series of the function 𝑓(𝑥) = (1 + 𝑥)𝑝 for 𝑝 ∈ ℝ

𝑓(𝑥) = (1 + 𝑥)𝑝; 𝑓(0) = 1
𝑓 ′(𝑥) = 𝑝(1 + 𝑥)𝑝−1; 𝑓 ′(0) = 𝑝
𝑓″(𝑥) = 𝑝(𝑝 − 1)(1 + 𝑥)𝑝−2; 𝑓″(0) = 𝑝(𝑝 − 1)

⋮
𝑓 (𝑛)(𝑥) = 𝑝(𝑝 − 1)(𝑝 − 2) ⋯ (𝑝 − 𝑛 + 1)(1 + 𝑥)𝑝−𝑛;
𝑓 (𝑛)(0) = 𝑝(𝑝 − 1)(𝑝 − 2) ⋯ (𝑝 − 𝑛 + 1)

𝑃(𝑥) = 1 + 𝑝𝑥 + 𝑝(𝑝 − 1)𝑥2

2!
+ 𝑝(𝑝 − 1)(𝑝 − 2)𝑥3

3!
+ ⋯

=
∞

∑
𝑛=0

𝑝(𝑝 − 1)(𝑝 − 2) ⋯ (𝑝 − 𝑛 + 1)𝑥𝑛

𝑛!

=
∞

∑
𝑛=0

(𝑝
𝑛

)𝑥𝑛
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Connection to Taylor Series
Maclaurin series approximates a function near 𝑥 = 0
Can be approximated near any point 𝑥 = 𝑎 using Taylor series

𝑃(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)(𝑥 − 𝑎)2

2!
+ 𝑓‴(𝑎)(𝑥 − 𝑎)3

3!
+ ⋯

Figure: The Function ln 𝑥 and Approximation
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